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Abstract 
 
The current work sets out to showcase the power of statistical learning algorithms to mine 
boiler operational data in an attempt to create a predictive model capable of capturing the 
plant specific behavior. The machine learning predictive model can be used to perform 
investigations such as boiler diagnostics, sensitivity analysis on operational parameters and 
root cause analysis to determine cause of upset/detrimental conditions. A data mining 
analysis was performed on an industrial scale biomass boiler co-firing sugarcane bagasse 
and furfural residue, which operated at excessive final steam temperatures (420-440°C) 
when compared to the design steam temperature (400°C). The goal of the analysis was to 
find the cause of the excessive final steam temperatures and propose remedial action. The 
analysis comprised of using artificial neural network, support vector regression and random 
forest machine learning algorithms to mine the operational data acquired from the boiler’s 
distributed control system and generate a statistical predictive model.  
 
A sensitivity analysis is performed on the boiler input parameters (fuel moisture, fuel density, 
fuel feeder speeds, induced draught fan speed, and forced draught fan damper position) 
using the machine learning model, to find the inputs which cause excessive temperature 
excursions. The model was able to accurately capture the boiler trends, and was used to find 
that it was the fuel moisture, density and upward flow velocity in the furnace which caused 
the flame to be positioned much higher in the furnace than intended. The higher flame 
position caused an increase in thermal radiation heat transfer to the radiant superheater 
above the design values which resulted in the higher final steam temperature. 
 
Keywords: boilers, machine learning, artificial neural networks, diagnostics 

 
Introduction 

 
Upset or detrimental boiler conditions can lead to the damage of equipment, plant 
inefficiency, plant downtime and danger to staff members working on or around the unit. To 
find the cause of these conditions is mostly not an  easy task as the amount of boiler 
input and output parameters creates a multidimensional problem to troubleshoot. Human 
beings excel at understanding 1 to 3 dimensional problems and the internal dependencies 
between the individual parameters, and struggle to comprehend the relationships between 
the various parameters in higher dimensional problems. Such was the case that will be 
discussed in the current work where a radiant superheater and internal de-superheater were 
installed in a pre-existing boiler unit. During operation the steam temperature increase in the 
new radiant superheater (∆T=135°C) was consistently 35% higher than the design value 
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(∆T=100°C). Excessive final steam temperatures can lead to thermal fatigue of the 
superheater material and in turn boiler downtime, continuous lifting of the superheater safety 
valve and superheater automatic vent valve which reduces plant efficiency or even trips 
turbines due to excessive inlet steam temperatures. The objective of the current work was to 
develop a predictive model which can be used to determine the cause(s) of the excessive 
final steam temperature by varying combinations of boiler input parameters to the machine 
learning model and predicting the final steam temperature response. 
 
The machine learning algorithms chosen for the current work were limited to: regression 
artificial neural networks (RANN), random forests (RF) and support vector regression (SVR). 
The mentioned machine learning models have been previously used for various applications 
in the power generation sector. Neural networks were used by Tan et al. (2015) to model the 
correlation between operational parameters (boiler input parameters such as induced 
draught fan speed, O2 concentration in the furnace, and secondary air fan speed) and NOx 
emissions for a 700 MW coal-fired power plant. The model developed by Tan et al. (2015) 
had an absolute prediction error of 0.92%. The model was used along with various 
optimisation algorithms to minimise NOx emissions within a set of constraints. Machine 

learning was used by Hu et al. (2017) to develop a fault detection model based on signal 
reconstruction for a combined-cycle power plant compressor. The trained machine learning 
model had a mean squared error (MSE) in the order of 0.01 for the reconstructed signal, and 
Tufekci (2014) utilised machine learning to develop a model capable of predicting electrical 
power output for a base load combined cycle power plant using ambient temperature, 
atmospheric temperature, relative humidity and exhaust steam pressure as the predictors 
for the model. Using similar approaches to the above mentioned work a machine learning 
model will be trained on a year’s operational data, where boiler input parameters will act as 
predictors and final steam temperature as target/response variable for the model. 
 
This paper is comprised of the following sections: 
 
(i) Boiler and fuel information, where the boiler operational parameters will be presented 

and discussed along with the fuel characteristics and boiler history. 
(ii) Data modelling, where a brief discussion of the theory regarding the implemented 

machine learning models will be presented, dataset exploratory analysis, data 
augmentation, comparison of models’ in-sample and validation MSEs and final model 
selection. 

(iii) Results and discussion, where the selected machine learning model is used to predict 
the final steam temperature and inference is made regarding the observations. 

 
Boiler and fuel information 

 
The boiler used for the case study has an evaporation rate of 140 000 kg/h and final team 
conditions of 30 bar(g) and 400°C, whilst co-firing sugarcane bagasse and furfural residue. 
The boiler has a three-pass evaporator bank configuration, with a two-stage superheater 
with interstage attemperation by means of an integral indirect contact de-superheater. The 
primary superheater is a screened drainable horizontal superheater and the secondary a 
radiant pendant superheater. Table 1 shows the boiler design parameters for the maximum 
continuous rating (MCR). 

Table 1. Boiler design parameters. 

Parameter Units MCR Value 

Boiler evaporation rate kg/h 140 000 

Final steam pressure kPa(g) 3000 

Final steam temperature °C 400 

Final gas temperature °C 175 

Boiler efficiency (LHV) % 85.6 
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Data were collected from the boiler distributed control system storage servers for the period 
April to December 2016. The data streams that were collected and used for the development 
of the predictive model can be seen in Table 2. Other data streams were collected such as 
superheater steam pressure, furnace temperature, oxygen content at evaporator outlet, final 
gas temperature and evaporator bank outlet gas temperature but were not utilised in the 
development of the machine learning model because the cause of the excessive final steam 
temperatures was related to the combustion dynamics in the furnace, which will be 
discussed later. 
 

Table 2. Collected data streams from boiler DCS for predictive model creation. 

Parameter Units 

Final steam temperature °C 

Boiler evaporation rate tph 

Induced draught (ID) fan speed rpm 

Feeder speeds (7 feeders) rpm 

Forced draught (FD) damper position % 

Front wall over-fire air pressure Pa 

Rear wall over-fire air pressure Pa 

Fuel densities (measured on 2 chutes) % 

Fuel moistures % 

 
The front wall over-fire air pressure reading is for a duct located behind the front wall of the 
boiler. The duct feeds the pneumatic fuel spreaders along with a front wall over-fire air 
injection above the feeder’s entrance to the furnace. The rear wall has two sets of over-fire 
air nozzles located 1.2 m and 2.2 m above the grate where each set is comprised of 
28 nozzles. The fuel densities are measured by nuclear density measurement devices 
located on two of the seven biomass feeding chutes. The fuel moisture is measured using an 
online moisture measurement device and has been calibrated using laboratory measurements 
of fuel moisture (error of roughly 2% on mass). Roughly 85% of required air is fed by the 
forced draught fan and is injected through the boiler grate. The amount of air introduced by 
forced draught fan is controlled by the fan’s inlet damper position. 
 
Figures 1a to 1d show plots of some of the boiler data streams for the mentioned period. 
The multiple boiler evaporation rate dips in Figure 1a are due to the monthly shuts the 
sugar mill has, otherwise the boiler is operated with an evaporation rate of between 110-
130 tph for the majority of the period. Figure 1b shows that the boiler operates for the 
majority of the period with a final steam temperature above 400°C, with the attemperator valve 
completely open to the de-superheater device itself (not shown in figures). Therefore, the 
entire attemperator margin is dissipated by the high heat transfer rates to the secondary 
superheater. The original fuel moisture used for the design of the new radiant superheater 
and de-superheater was 51% on mass basis. From Figure 1c it is seen that the fuel 
moistures varies continuously between 45 and 51%. The oxygen content in the flue gas 
varies between 2 and 4% for the majority of the data points which are relatively close to the 
design value of 3.1%. 
 
From figures 2a and 2b it is seen that for a given steaming rate the average feeder speed 
varies markedly (at 120 tph the feeder speeds vary between 400 and 1 000 rpm), pointing 
towards a substantial change in fuel composition or density. The biomass feeders for the 
boiler under consideration are volumetric feeding devices and changes in the fuel density 
may introduce more fuel to the furnace than required for the given load requirement, thus one 
would anticipate that the feeder speeds will vary significantly at a specific load due to the 
variation in fuel bulk density. Figure 2b shows that for a given evaporation rate the final steam 
temperature variation is notable, roughly 25°C at 130 000 kg/h. Looking at the large 
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variations in final steam temperature and feeder speeds for a given boiler load points 
towards notable fuel variability and variation in combustion dynamics. 

 
                       (a) Boiler evaporation rate                                     (b) Final steam temperature 
 
 
 
 
 
 
 
 
 
 
 
 

 
                                   c) Fuel moisture              (d) Flue gas oxygen  

 
Figure 1. Boiler distributed control system data streams 

for the time period: 2016-04 to 2016-12. 

 
 
 

 

   
(a)                                                                       (b)  

 
Figure 2. Boiler evaporation rate as a function of average 

biomass feeder speed and final steam temperature. 

 
 
 
Sugarcane bagasse is a fibrous fuel stream which is generated during the processing of 
sugar from cane. Furfural in turn is produced from bagasse in large reactors. The furfural 
production process produces another fibrous stream namely furfural residue which can be 
burnt in a boiler for steam production. While bagasse and furfural residue are fibrous 
materials from the same feedstock, they have very different physical properties and 
combustion characteristics (Naude et al. 1993). 
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Table 3. Chemical and physical characteristics of furfural residue and bagasse (Naude et al. 
1993) 

Parameter Units Furfural residue Bagasse 

Proximate analysis 

Ash % 2.9 2.0 

Volatiles % 37.2 40.2 

Fixed carbon % 8.0 5.8 

Moisture % 51 52 

Ultimate analysis 

Carbon % 56.2 48.6 

Hydrogen % 5.8 6.0 

Oxygen % 37.4 45.4 

Nitrogen % 0.5 - 

Sulphur % 0.1 - 

Combustion 

Gross calorific value per kg kJ/kg 9 800 8 740 

Temperature at onset of 
combustion 

°C 250 228 

Apparent activation energy kJ/mol 110 100 

Physical properties 

Bulk density kg/m3 450 140 

 
 
The texture of furfural residue indicates a size grading much finer than that of bagasse. 
Typical grading of furfural residue and bagasse are represented in Figure 3. The finer size 
grading could result in the furfural residue being suspended higher up in the furnace (due to 
upward air flow from the secondary air injections and primary air fed through the grate at the 
bottom of the furnace) causing the flame position to be closer to the radiant superheater than 
during normal bagasse only operation. In addition, the higher activation energy of furfural 
residue would also delay particle ignition and could add to a higher flame position. The higher 
flame position in turn increases the radiative heat transfer to the secondary superheater and 
leads to possible temperature excursions. 

 

 
Figure 3. Particle size distribution of furfural residue and sugarcane bagasse. 
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As mentioned previously, the design moisture used for the design of the new radiant 
superheater and de-superheater was 51% and a fuel blend of 90% furfural residue and 10% 
bagasse on a mass basis. The lower average moisture content of the fuel leads to a higher 
adiabatic flame temperature and can further increase radiative heat transfer to the new 
superheater along with the higher flame position. Other factors which influence the 
combustion dynamics in the furnace are the draught profile by means of enhancing the 
oxidizer and fuel mixing rates. The draught or air flow profile in the furnace is created by the 
85% primary air introduced by the forced draught fan through the grate of the furnace 
vertically upward and the remaining fraction through the horizontally positioned over-fire air 
nozzles and pneumatic fuel spreaders which are fed by the secondary air fan. From the 
preliminary data and information on the fuel blend being fired in the boiler it can be 
ascertained that the combustion dynamics in the furnace plays a major role on the 
secondary superheater performance. The predictor values used to create a machine learning 
model able to capture the superheater performance should therefore be dependent on 
furnace inputs, which directly affect combustion dynamics. Additionally, to capture the 
required fuel and air amounts the boiler evaporation rate data stream can be used. The 
necessary predictor values used in creating the predictive model are listed in Table 2. In the 
next section the machine learning methods used to develop the predictive models from these 
data streams will be discussed. 
 

Data modelling 
 

Machine learning finds its origins in artificial intelligence, and the goal is to solve complex 
problems using machine learning methodologies as a collection of tools to learn complex 
relationships and then act or predict based on what has been learned. In other words 
machine learning takes complex relationships and regularities and learns from the 
observations through the use of computer algorithms. In this section the inner workings of 
the three machine learning models selected for this study will not be discussed, only data 
preparation will be discussed.  
 

Data preparation 
 

As the input space’s dimension increases we encounter a variety of problems such as 
algorithmic complexity and storage space required to fit the target function increases 
significantly, complexity of target function increases and thus the risk of overfitting and the 
required sample size required to develop an accurate model increases. In the present work 
some simple feature selection and extraction techniques were utilised to reduce the feature 
space dimensionality and sample size.  The original dataset of the operational parameters 
comprised of 28 parameters. Seeing as the goal of the investigation was to determine the 
cause of the excessive steam temperatures, feature selection was performed by selecting a 
smaller subset of features such as feeder speeds, FD damper position and ID fan speed. 
As discussed in a previous section only the features influencing the combustion dynamics in 
the furnace were selected, the selected features can be seen in Table 2. The subset 
selection reduced the input feature dimensionality from 28 to 15. To further reduce the input 
feature space’s dimensionality some basic feature extraction was performed by combining 
existing features. The seven feeder speeds were combined into an averaged feeder speed 
data stream for all the feeders and the two chute density readings were also averaged into a 
single stream resulting in a feature space dimensionality of eight. The response variable or 
output was selected as final steam temperature only, therefore the data used to develop the 
machine learning models have eight input features and a single output feature. The time 
series data for the boiler load observed in figure 1a, shows that the unit for the majority of 
the observations generated steam at a load of >100 tph, with intermittent boiler shuts, 
where the boiler was brought offline for weekly maintenance, these observations should not 
form part of the data that will be used to model the boiler performance. Figure 2b shows 
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that the high steam temperatures occurred at boiler loads above ±80 tph, therefore only 
observations where the boiler load was above 80 tph were used for model development. To 
remove the unwanted observations the data was sent through a high-pass filter. Therefore, all 
observations with a load below 80 tph were removed. Figures 4a and 4b below show the 
final steam temperature and fuel moisture data streams after it has been passed through the 
high-pass filter. 

           
                      a) Final steam temperature                                 (b) Fuel moisture  

 
Figure 4. Some filtered data streams. 

 
 
As mentioned one of the machine learning techniques used to model the data is artificial 
neural networks. The neural networks use gradient ascent to minimise the prediction error, 
but as the problem’s dimensionality increases the minimisation worsens. A method used to 
assist the gradient ascent algorithm to converge faster is to scale the input features by  

 

𝑧𝑖 =
𝑥𝑖 − 𝜇𝑖
𝜎𝑖

 

 
where zi is the scaled observation value, xi is the original observation feature values, µi is 
the mean value of the feature and σi is the standard deviation of the feature. 
 
Now that the feature space’s dimensionality has been reduced and the data adjusted, the 
predictive models were developed and their performance accessed. 
 
 

Results and Discussion 
 
The major parameters which influences the combustion dynamics in the furnace are the fuel 
quality (particle size and moisture) and furnace draught (forced draught and over-fire air 
amounts). The results section is divided into two parts: firstly the combined effect of fuel 
density and moisture changes on the final superheater temperature was investigated and 
secondly the combined effect of upward draught and particle size on the final steam 
temperature was investigated. 
 
The average boiler steam generation rate for the training dataset was 129 tph, therefore the 
investigation into the steam excursions using the machine learning models will be performed 
at this load only. For the first part where the fuel moisture and particle size effects are 
investigated the fuel density (chute density) was varied from 40→70% and for each density 
value the moisture was varied from 40→60%. The results for the three models is seen in 
figures 5 to 7. 
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Figure 5 .  Random forest final steam temperature predictions 
 for varying fuel moisture and density. 

 
Figure 6. Artificial neural network final steam temperature 

 predictions for varying fuel moisture and density. 

 
Figure 7 .  E-SVR final steam temperature predictions for  

varying fuel moisture and density. 
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From figures 5, 6 and 7 it is seen that the highest temperatures are found for fuel qualities 
that exhibit low moistures and high particle densities (small fuel particles). Lower moistures 
will increase the fuel’s higher heating value thus causing the flame temperature to increase. 
The smaller fuel particles will cause the combustion zone/flame to be positioned higher up in 
the furnace (closer to the superheater) due to the increased relative drag force the particles 
experience. The combined effect of these two occurrences results in the heat transfer to the 
superheater to increase beyond the expected design values. From the results of the three 
models it can be seen that fuel moisture and particle size play a major role in the 
superheater performance and a clear temperature increase is seen as the fuel particle size 
reduces (chute density increases). For the low range of fuel moisture values; as the moisture 
increases the superheater temperature decreases due to the lower flame temperatures, but 
for the higher range of moistures as the moisture increases the superheater temperature 
slightly increases. The slight increase in superheater heat transfer at excessive moistures is 
due to the increased convective heat flux the superheaters experience which is due the 
increased mass flow rate of the fuel (the lower heating value of the fuel requires more mass 
of fuel to sustain boiler load). 
 

 
Figure 8. Chute density histogram plot. 

 

 

Figure 9. Fuel moisture histogram plot. 

 
The average fuel moisture and chute density for the operation period, as mentioned, was 
48% (with the majority of the variation being between 46-51%) and 60 % (with the majority of 
the variation being between 59-61%) respectively and the respective histogram plots can be 
seen in Figures 8 and 9. At these fuel conditions the neural network and E-SVR predicts 
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temperatures above 410°C, whereas the Random forest model predicts 408°C. The Random 
forest model averages the output values that fall in a single partition, thus its prediction 
values is the averaged value from a wide range of temperatures, therefore the Random 
forest model predicts a slightly lower temperature compared to the other two models. In 
conclusion the major contributor to increased superheater heat transfer thus far is the fuel 
particle size, therefore the combined effect of upward draught and fuel density will be 
investigated next. 
 
To investigate the combined effect of the upward furnace draught and chute densities, the 
forced draught fan damper position input to the machine learning models was varied 
between 20-100% for chute density inputs of 45, 55 and 65% and the average result of the 
three models was predicted and can be seen in Figure 10. 

 
Figure 10. Effect of forced draught fan damper position and chute densities on final 

super-heater temperature. Red: 65%, Blue: 55% and Orange: 45% chute density. 

 
For the majority of the operations period the forced draught damper position was varying 
between 50- 55% open. The histogram plot of the forced draught fan damper position is seen 
in Figure 11. 
 

 
Figure 11. Forced draught fan damper position histogram. 

 
Investigating Figure 11, we can conclude that there were not enough data points in the 
damper range between 20-40% for the machine learning algorithms to really capture the 
trend and thus the models predict similar superheater performance. Beyond 40% damper 
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position the story is completely different, due to the fact that there is a multitude of data, the 
machine learning models are able to capture more accurately the trends in the data. We see 
from a damper position of 40% and upward that finer particles cause higher super-heater 
heat transfer and final steam temperatures. In addition, as the damper position is opened 
further the superheater temperatures climb, this effect is more pronounced the finer the fuel 
is. 
 

Conclusions 
 
The current work set out to find the cause of excessive final steam temperatures that are 
experienced in an industrial biomass boiler. Preliminary calculations and data pointed 
towards the combustion dynamics (flame temperature, position and height) as the cause of 
the higher radiant superheater heat transfer. To find the input parameters that cause the 
excessive steam temperatures, advanced machine learning algorithms were used to develop 
predictive models capable of calculating final superheater temperatures based on the boiler 
input parameters. These models were then used to pin point the cause of the over-
performance. The random forest, neural network and E-SVR models all showed that the 
major contributor to the excessive performance of the super heater was the fuel particle size. 
The combination of fine particles and much lower moistures than the design values cause 
the superheater to over-perform. The upward draught which is influenced by the forced 
draught fan damper position also affects the superheater performance, especially the finer 
the fuel particles are. 
 
The machine learning models were able to accurately capture the boiler superheater 
performance as a function of the boiler input parameters and were successfully used to find 
the root cause of the excessive final steam temperatures. 
 

Future work 
 
Future work includes developing a model capable of predicting all the boiler output 
parameters and using the model as a complete fault-finding tool and possibly a control 
system. 

 
Use the forced draught damper and final superheater temperature data model (Figure 10) to 
adjust the control logic of the boiler to limit upward draught when the fuel particles’ size 
reduces. The control logic will increase the over-fire air fraction at high chute densities. 
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