Method 7.11 – Raw sugar: conductivity ash

1. Rationale

This method is applicable to cane raw and refined sugars. The conductivity ash gives a measure of the concentration of the ionised soluble salts present in the sample with conductivities of up to 500 μS/cm at concentrations of up to 5 g/100 cm³.

2. Principle

The specific conductivity of a sugar solution at a concentration of 5 g/100 cm³ or less is determined and compared to the specific conductivity of water. The equivalent ash content of the sample as per convention is calculated by the application of a generic conversion factor.

3. Definitions

3.1 Cell constant

The cell constant of a conductivity meter depends on the area of the two platinum plates and their distance apart. Since both these dimensions are fixed, but vary from one cell to another, it is necessary to determine this constant for each cell and for different types of samples. The constant should be checked once a month or whenever either of these two dimensions may have changed.

4. Apparatus

4.1 Oven operating at 105°C
4.2 Conductivity meter
4.3 Volumetric flasks: 100 and 2 × 1 000 cm³
4.4 Beakers: 2 × 50 and 250 cm³
4.5 Analytical balance readable to 0.0001 g
4.6 Top pan balance readable to 0.01 g
4.7 Water bath operating at 20.0 ± 0.2°C
4.8 Watch glass

5. Reagents

5.1 Purified water

Use twice-distilled or de-ionised water with a specific conductance of less than 2 μS/cm for the preparation of all solutions.
5.2 **Potassium chloride (0.01 M)**

Dry the potassium chloride (KCl) in an oven at 105°C for 3 hours and cool in a desiccator. Weigh 745.56 mg of dried potassium chloride, dissolve in water in a 1 000 cm³ volumetric flask and make to the mark. This solution has a conductivity of 1277.96 µS/cm at 20°C after the specific conductivity of the water has been subtracted.

5.3 **Potassium chloride (0.0025 M)**

Dilute 250 cm³ of the 0.01 M KCl solution in a 1 000 cm³ volumetric flask and make to the mark. This solution has a conductivity of 328 µS/cm at 20°C after the specific conductivity of the water has been subtracted.

6. Procedure

6.1 **Determination of the cell constant**

Place a beaker with 100 cm³ of the 0.0025 M KCl solution in the water bath at 20.0°C for 30 minutes. Cover the beaker with a watch glass to minimise evaporation. Read the conductivity of the 0.0025 M KCl solution.

Calculate the cell constant according to 7.1. If the measurements cannot be made at 20.0°C a temperature correction must be applied to the theoretical conductance of the KCl solution according to 7.2. A new cell constant must be determined every month.

6.2 **Sample**

Prepare a solution by dissolving 5 g of the raw sugar sample in about 60 cm³ purified water in a 100 cm³ flask. Mix to dissolve and add purified water to just under the mark. Stand the flask in a water bath at 20.0 ± 0.2°C for 30 minutes together with a beaker of purified water (5.1) which will be used as a blank. Make the solution up to the mark.

Rinse the conductivity cell twice with the purified water. Transfer a fresh portion of the purified water to a 50 cm³ beaker and measure the conductivity at 20.0 ± 0.2°C. Rinse the conductivity cell twice with the sample solution. Transfer a fresh portion of the solution to a 50 cm³ beaker and measure the conductivity at 20.0 ± 0.2°C. If the readings cannot be taken at 20.0°C a temperature correction must be applied according to 7.4.

7. Calculations

7.1 **Cell constant**

Deduct the specific conductivity of the purified water from the conductivity of the KCl solution.

$$\text{cell constant (}/\text{cm}) = \frac{\text{theoretical conductivity (µS/cm)}}{\text{conductivity of KCl solution (µS)}}$$

7.2 **Temperature correction for KCl solution**

If the KCl solution is not at 20.0°C the theoretical conductivity of the solution must be adjusted according to the equation below. This adjustment must be made before the cell constant is calculated and is only valid in the range 20 ± 5°C.

$$\text{KCl conductivity at } T^\circ\text{C (µS/cm)} = \text{Conductivity at 20.0°C} \times [1 + 0.021 \times (T - 20.0)]$$

where \(T\) = Temperature (°C)
Section 7: Raw sugar

7.3 **Sample conductivity ash** (applicable only to raw sugar)

\[
\text{ash} (\%) = \left[(C_s \times \text{cell constant}) - (C_w \times \text{cell constant} \times 0.9) \right] \times 0.0018
\]

where
- \(C_s\) = conductivity of the sample
- \(C_w\) = conductivity of purified water
- 0.9 = water correction factor
- 0.0018 = generic method constant

7.4 **Temperature adjustment for sample reading after calculation of ash (%)**

\[
\text{Conductivity at } 20.0^\circ C (\mu S) = \frac{\text{ash} (\%)}{1 + 0.023 \times (T - 20)}
\]

8. **Example**

8.1 **Cell constant**

The conductivity of the 0.0025 M KCl solution at 24.0°C is 371.17 µS and the specific conductivity of the purified water is 1.17 µS. The theoretical conductivity of the 0.0025 M KCl solution at 24.0°C is:

\[
\text{KCl conductivity at } 24.0^\circ C = 328 \times [1 + 0.021 \times (24.0 - 20.0)] = 356 \mu S
\]

\[
\text{cell constant } = \frac{356 \mu S/cm}{370 \mu S} = 0.962 /cm
\]

8.2 **Sample**

Specific conductivity of water at 25.0°C = 1.17 µS

Conductivity of sample at 25.0°C = 142.87 µS

\[
\text{ash} (\%) \text{ at } 25.0^\circ C = \left[(142.87 \times 0.962) - (1.17 \times 0.962 \times 0.9) \right] \times 0.0018 = 0.246\%
\]

\[
\text{ash} (\%) \text{ at } 20.0^\circ C = \frac{0.246\%}{1 + 0.023 \times (25.0 - 20.0)} = 0.221\%
\]

Express to two decimal places, 0.22%

9. **Precision**

The tolerance associated with the analysis is ± 0.01%.

10. **References**
